Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease.

نویسندگان

  • Jennifer A Lee
  • Ken Inoue
  • Sau W Cheung
  • Chad A Shaw
  • Pawel Stankiewicz
  • James R Lupski
چکیده

Genomic architecture, higher order structural features of the human genome, can provide molecular substrates for recurrent sub-microscopic chromosomal rearrangements, or may result in genomic instability by forming structures susceptible to DNA double-strand breaks. Pelizaeus-Merzbacher disease (PMD) is a genomic disorder most commonly arising from genomic duplications of the dosage-sensitive proteolipid protein gene (PLP1). Unlike many other genomic disorders that result from non-allelic homologous recombination utilizing flanking low-copy repeats (LCRs) as substrates, generating a common and recurrent rearrangement, the breakpoints of PLP1 duplications have been reported not to cluster, yielding duplicated genomic segments of varying lengths. This suggests a distinct molecular mechanism underlying PLP1 duplication events. To determine whether structural features of the genome also facilitate PLP1 duplication events, we analyzed extensively the genomic architecture of the PLP1 region and defined several novel LCRs (LCR-PMDs). Array comparative genomic hybridization showed that PLP1 duplication sizes differed, but revealed a subgroup of patients with apparently similar PLP1 duplication breakpoints. Pulsed-field gel electrophoresis analysis using probes adjacent to the LCR-PMDs detected unique recombination-specific junction fragments in 12 patients, enabled us to associate the LCR-PMDs with breakpoint regions, and revealed rearrangements inconsistent with simple tandem duplications in four patients. Two-color fluorescence in situ hybridization was consistent with directly oriented duplications. Our study provides evidence that PLP1 duplication events may be stimulated by LCRs, possibly non-homologous pairs at both the proximal and distal breakpoints in some cases, and further supports an alternative role of genomic architecture in rearrangements responsible for genomic disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders

The prevailing mechanism for recurrent and some nonrecurrent rearrangements causing genomic disorders is nonallelic homologous recombination (NAHR) between region-specific low-copy repeats (LCRs). For other nonrecurrent rearrangements, nonhomologous end joining (NHEJ) is implicated. Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused most frequently (60%-70%) by non...

متن کامل

Gait abnormalities and progressive myelin degeneration in a new murine model of Pelizaeus-Merzbacher disease with tandem genomic duplication.

Pelizaeus-Merzbacher disease (PMD) is a hypomyelinating leukodystrophy caused by mutations of the proteolipid protein 1 gene (PLP1), which is located on the X chromosome and encodes the most abundant protein of myelin in the central nervous sytem. Approximately 60% of PMD cases result from genomic duplications of a region of the X chromosome that includes the entire PLP1 gene. The duplications ...

متن کامل

Familial Case of Pelizaeus-Merzbacher Disorder Detected by Oligoarray Comparative Genomic Hybridization: Genotype-to-Phenotype Diagnosis

Introduction. Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive hypomyelinating leukodystrophy characterized by nystagmus, spastic quadriplegia, ataxia, and developmental delay. It is caused by mutation in the PLP1 gene. Case Description. We report a 9-year-old boy referred for oligoarray comparative genomic hybridization (OA-CGH) because of intellectual delay, seizures, microcephaly,...

متن کامل

Complex Genomic Rearrangements at the PLP1 Locus Include Triplication and Quadruplication

Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD su...

متن کامل

Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease

OBJECTIVE Pelizaeus-Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. METHODS By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 15 14  شماره 

صفحات  -

تاریخ انتشار 2006